‘Resolver’ la hipótesis de Riemann

Anuncian la solución de la hipótesis de Riemann, el enigma matemático que podría revolucionar internet | Ciencia
Michael F. Atiyah

Los días pasados un terremoto recorría el mundo matemático: este lunes, 24 de septiembre, Sir Michael Atiyah, uno de los matemáticos más laureados y respetados de la historia anunciaba en el abstract de su conferencia en el Heildelberg Laureate Forum, que había demostrado de una manera sencilla la hipótesis de Riemann.

El abstract decía textualmente: ”Es un conocido problema matemático sin resolver desde el año 1859. Yo presentaré una prueba simple utilizando una perspectiva radicalmente nueva. Está basada en los trabajos de Von Neumann (1936), Hirzebruch (1954) y Dirac (1928)”. Su presentación apenas duró 45 minutos, estuvo basada en una única diapositiva de PowerPoint y el trabajo científico (ACCEDER) en el que se detallan los pormenores y que ya ha sido enviado para su revisión a la revista Proceedings of the Royal Society A sólo tiene cinco páginas.

Si el anuncio fuese de otra persona, el revuelo no hubiera sido de esta envergadura, pero Michael Francis Atiyah, de 89 años, es medallista Fields en 1966 y Premio Abel en 2004 (entre otras muchas distinciones). La duda sobre esta supuesta prueba surgió enseguida, aludiendo a su edad y a otros anuncios fallidos previos, y también a la singularidad de la ocasión, cuando hace poco más de un mes, Atiyah impartió una conferencia en el Congreso Internacional de Matemáticos de Río de Janeiro.

¿Y qué dice esta famosa conjetura?

Resultado de imagen de hipótesis de Riemann

Viene de una de esas extrañas relaciones internas de las matemáticas, entre los números primos y una función entre los números complejos llamada precisamente función zeta de Riemann, de manera que los ceros de esta función (los valores donde se anula) tienen todos parte real 1/2. Así que probar la conjetura de Riemann nos da una buena idea de cómo se distribuyen los números primos, que sabemos desde Euclides que son infinitos. Y los números primos son los ladrillos con los que se construyen todos los demás, piezas claves en muchas aplicaciones como en la criptografía.

Las pistas que daba Atiyah en su abstract, se referían a tres trabajos: el de John von Neumann titulado ‘On an algebraic generalization of the quantum mechanical formalism‘, esencial para la formulación matemática de la mecánica cuántica; uno segundo titulado ‘Arithmetic genera and the Theorem of Riemann-Roch‘, clásico en geomería algebraica, escrito por el matemático alemán Hirzebruch, y cuyo resultado principal está basado en la teoría del cobordismo de René Thom; y otra obra clásica del premio Nobel P.A.M. Dirac, ‘The Quantum Theory of the Electron’, en el que introduce la ecuación de onda del electrón unificando la mecánica cuántica y la relatividad especial.

Sólo un genio como Atiyah podría ser capaz de presentar un abstract basado en estas tres piezas maestras de tres maestros y decirnos que así ha probado de manera sencilla la hipótesis de Riemann. Sin embargo, tras una muestra de erudición matemática y física (implicando incluso a la famosa constante de estructura fina de Arnold Sommerfeld), nos hemos quedado con la miel en los labios. Atiyah usa la función de Todd (llamada sí en honor de su antiguo profesor John Arthur Todd) para obtener una contradicción, pero las dudas surgen. Por una parte, hay cuestiones técnicas sobre las funciones implicadas, y por otra, da la impresión de ser un argumento circular. En cualquier caso, esta presentación ha servido para remover el interés sobre las matemáticas y esta extraordinaria conjetura, uno de los problemas del milenio. Sabremos más en los próximos días sobre la veracidad o no de la prueba de Atiyah.

Un comentario sobre “‘Resolver’ la hipótesis de Riemann

Responder

Introduce tus datos o haz clic en un icono para iniciar sesión:

Logo de WordPress.com

Estás comentando usando tu cuenta de WordPress.com. Salir /  Cambiar )

Google photo

Estás comentando usando tu cuenta de Google. Salir /  Cambiar )

Imagen de Twitter

Estás comentando usando tu cuenta de Twitter. Salir /  Cambiar )

Foto de Facebook

Estás comentando usando tu cuenta de Facebook. Salir /  Cambiar )

Conectando a %s